Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends

A.L. Padilla-Ortiza,b,* & David Ibarrac,d

aCONACyT-CICESE, Unidad Monterrey, Alianza Centro 504, PIIT Apodaca, 66629, México; bITESM Campus Ciudad de México, Calle del Puente 222, Col. Ejidos de Huipulco, Ciudad de México 14380, México; cTecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, C.P. 64849 Monterrey, Nuevo León, México; dMassachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA, 02139

*Address all correspondence to: Ana Laura Padilla-Ortiz, CONACyT-CICESE, Unidad Monterrey, Alianza Centro 504, PIIT, Apodaca, Nuevo León, México; Tel.: +52 (81) 8196-0350 ext. 28415, E-mail: apadilla@cicese.mx

ABSTRACT: Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.

KEY WORDS: review, state of the art, lung sounds, heart sounds, respiratory sound analysis, heart sound analysis

ABBREVIATIONS: CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; MS, mitral stenosis; MVP, mitral valve prolapse; PS, pulmonary stenosis; TB, tuberculosis; VAS, valvular aortic stenosis; WHO, World Health Organization

I. INTRODUCTION

A recent study identifies cardiovascular disease (17.9 million), cancer (8.8 million), and chronic respiratory diseases (3.8 million) as the major causes of death from noncommunicable diseases in 2015.1 Chronic obstructive pulmonary disease (COPD), asthma, acute respiratory infections, tuberculosis (TB), and lung cancer are the most common respiratory diseases to result in severe illness and death worldwide.1

The World Health Organization (WHO) reports that an estimated 6% of all deaths worldwide (more than 3 million people) occur each year from COPD.2 COPD is currently the fourth leading cause of death in the world,3 but it is projected to become the third leading cause of death by 2020.4 Approximately 235 million people currently suffer from asthma. The most common chronic disease of childhood,5 asthma affects 14% of children globally, and that number is on the rise.6 More than 4 million people die of respiratory infections every year.7 For many years, acute lower respiratory tract infections (pneumonia and acute bronchitis) have been among the top three causes of death and disability among both children and adults.7 It has been reported that 10.4 million people fell ill with TB, with an estimated 1.4 million deaths from TB occurring in 2015.8 Lung cancer is the most common cause of cancer-related deaths worldwide (1.69 million people annually).7 Approximately one in every four deaths (700,000) annually in North America are the result...
of heart disease. In the United States, heart disease is the leading cause of death in both men and women, but more than half of heart disease deaths in 2009 occurred in men. Coronary heart disease (CHD) is the most common type of heart disease, resulting in more than 400,000 deaths annually in North America. Every year, ~800,000 Americans suffer a heart attack. Of these, 550,000 have their first heart attack, and 250,000 have already had at least one.

Someone diagnosed with heart disease has a poor prognosis. Its presence commonly signals the final phase of many processes, and one of the most noticeable is ischemic heart disease. Mortality associated with heart disease is comparable to that due to common cancers, with a survival rate of < 49% during a span of 4 yr. Despite this data, current technology in treatment has brought improved quality of life and survival to heart-failure patients. On the other hand, improved survival and the many co-morbidities are accompanied by additional health problems. Recent studies show that a substantial number of heart-failure patients die from causes other than the cardiac disease, in particular, events due to malignancies, respiratory problems, and septicemias.

II. LUNG AND HEART SOUND CHARACTERISTICS

A. Lung Sounds

The respiratory cycle has two stages. During the inspiration phase, the oxygen-rich air flows into the lungs so that the chest cavity, including the lungs, expands. Intercostal muscles (muscles attached to the chest) and the diaphragm contract in a downward direction. Conversely, during the expiration phase, air is forced out so that the chest relaxes, the volume of the chest cavity decreases, the lungs are forced to compress, and the intercostal muscles and diaphragm relax. Carbon dioxide-rich air (CO\textsubscript{2}) is expelled during the expiration phase.

Respiratory sounds are produced by airflow within the chest cavity. Characteristics of normal breath sounds are shown in Figs. 1 and 2. When the airflow within the chest is interrupted by a pulmonary deficiency, the sounds generated have certain specific characteristics (see Figs. 3 and 4). The information contained within the signal waveform such as frequency, intensity, and timbre (or quality) are characteristics of respiratory sounds that can help to diagnose common pulmonary diseases.

B. Heart Sounds

Some of the common mechanisms by which heart sounds are generated include (1) opening or closing heart valves, (2) flow of blood through the valve orifice, (3) flow of blood into the ventricular chambers, and (4) rubbing of cardiac surfaces. These mechanisms produce four principal heart sounds (shown in Fig. 5) that consist of the following:

- Vibrations generated by closure of the mitral (M1) and tricuspid (T1) valves produce the first heart sound (S1). This corresponds to the end of diastole and beginning of the ventricular systole and precedes the upstroke of carotid pulsation.
- The second heart sound (S2) is produced by the closure of the aortic (A2) and the pulmonary (P2) valves at the end of systole. Intensity depends on valvular factors, transvalvular gradient, mechanical factors, and size of the great vessels.
- The third heart sound (S3) is a low-pitched, early diastolic sound, audible during the rapid entry of blood from the atrium to the ventricle. S3 occurs when rapidly rushing blood from the atria is suddenly decelerated by the ventricle when it reaches its elastic limit. In a normal ventricle, this can happen with an excessive volume of incoming blood or in hyperdynamic states or volume-loaded conditions.
- The fourth heart sound (S4) is a late diastolic sound that corresponds to late ventricular filling through active atrial contraction. Ventricular theory proposes that S4 is generated by sudden deceleration of the jet of blood as it enters a ventricle with decreased compliance. Impact theory proposes that S4
FIG. 1: Characteristics of normal breath sounds

FIG. 2: Time-domain characteristics (top) and spectrogram (bottom) of normal breath sounds
is the result of the movement and impact of the blood on the ventricle following atrial expulsion. Active atrial contraction is necessary for the generation of S4.23 Several studies24–26 have shown that for both S1 and S2 the major concentration of energy is below 150 Hz, which may indicate that both sounds are caused by vibrations within the same structure, possibly the entire heart. However, S2 spectra have greater amplitude than S1 spectra, above 150 Hz, which may be due to vibrations within the aorta and pulmonary artery.27 Heart sound classification is presented in Fig. 6, and its magnitude spectrogram is shown in Fig. 7.

C. Auscultation

Auscultation is a rapid, relatively easy, effective, and noninvasive technique often used by trained physicians to diagnose respiratory and cardiac diseases.28 Auscultation usually is performed with a stethoscope, an acoustic medical instrument invented by Laennec in 1816.29 Initially, a rolled paper cone, considered to be the first stethoscope, was succeeded by a hollow tube of wood.30 Due to the high number of modifications to the original model, the modern stethoscope is much different from the first model. More recent stethoscopes can record and send the recorded sounds to a personal computer for processing and analysis.31 Auscultation with a stethoscope is a highly subjective process and depends on several factors including experience and skill of healthcare professionals and their ability to recognize different sound patterns.32 For respiratory examination, additional requirements must be considered. For example, the patient must be seated and auscultation performed in a quiet room to reduce ambient noise.17

Research conducted by Abella et al.33 showed that amplification at low frequencies in stethoscopes occurs below 112 Hz, the point at which heart sounds can be heard;27 however, in this range, the human ear loses sensitivity.34 This represents a major problem for diagnosis.

Such disadvantages regarding auscultation have been overcome by means of computerized analysis of recorded lung and heart sounds.32 Computerized analysis enables a systematic approach to the diagnosis of different respiratory or cardiac diseases.35 Computerized lung and heart
FIG. 4: Adventitious lung sounds (ALS) waveforms (top) and spectrogram (bottom) of (a) wheeze, (b) crackle, and (c) rhonchi

FIG. 5: Heart sound waveforms

sound analysis takes place in different stages. (1) Acoustic signals generated by the human body are acquired and recorded by an electronic device. (2) At the feature extraction stage, the most relevant information is culled from a large set of measurements. (3) The final stage is classification, which recognize the feature class based on the properties of the features selected from previous stage.

III. OVERVIEW OF SOUND DATABASES

A. Lung and Heart Sound Databases

Lung and heart sound databases have been developed as learning tools and enhance problem-solving skills in the area of respiratory medicine. In many cases, clinical data are recorded at considerable
expense, used for diagnosis once, and then filed away indefinitely. Moreover, the effort needed to document data for storage and sharing in a semipermanent manner is rarely available at the close of a research project. Some of the most relevant databases are described below.

1. Lung Sound Databases

- Marburg Respiratory Sounds (MARS) is a database of respiratory sounds measured in actual patients. MARS database has stored more than 5000 sound recordings from patients with different diseases, including bronchial asthma (50 patients), COPD (40), lung fibrosis (5), and pneumonia (45), as well as healthy individuals (250). Clinical parameters such as lung function, laboratory results, and X-ray findings are included. Three independent pulmonary experts have evaluated and confirmed these lung sound recordings.36
Lung and Heart Sounds Analysis

- The Respiratory Acoustics Laboratory Environment (RALE) repository, often used by researchers, is a computer-aided instruction program on chest auscultation. It includes a respiratory sound database with examples of several lung sounds, sonograms, and quizzes. Unlike MARS, RALE is not open-source software.\(^{37}\)

In addition to these lung sound databases, open-source applications are available, and some are described below:

- The Physiological Signal Analysis System (PhiSAS) was developed for the observation of lung sounds and provides an objective analysis. PhiSAS allows sound recording and is equipped with a wide range of processing and analysis tools including Fourier, wavelet, and time-frequency analysis.\(^{38}\)

- LungSounds@UA is an interface developed in Matrix Laboratory (MATLAB) to collect and organize respiratory data in a single multimedia database. It is possible to record respiratory sounds in these seven, most relevant locations: trachea, anterior left and right, lateral left and right, and posterior left and right areas of the chest.\(^{39}\)

- Respiratory Sound Annotation Software (RSAS) was developed in MATLAB. RSAS is a tool used to collect lung sound reference annotations. RSAS allows sound recording,\(^{40}\) and the annotation process allows health professionals to diagnose, monitor, and detect cardiorespiratory disease through the use of adventitious lung sounds (ALS) such as crackles, wheezes, and phase-on respiratory sounds.

- Computerised Lung Auscultation—Sound Software (CLASS), developed in Java, integrates recording, annotation, and tutorials regarding respiratory sounds. This tool was assessed by physiotherapy students to identify its limitations and has been found to be useful in academic and clinical environments.\(^{41}\)

2. Heart Sound Databases

The PhysioNet/Computing in Cardiology (CinC) Challenge of 2016\(^ {42}\) attempts to access the research community in an effort to contribute to multiple promising databases.\(^ {43}\) Such a group can generate high-quality heart sounds. Before the PhysioNet/CinC Challenge 2016, only three public, heart sound databases were available: (1) A database from the University of Michigan Heart Sound and Murmur Library (MHSDB), (2) the PASCAL database,\(^ {44}\) and (3) the Cardiac Auscultation of Heart Murmurs database, summarized as follows:

- The MHSDB, provided by the University of Michigan Health System, includes only 24 heart sound recordings with a total time length of 1500 s.\(^ {45}\)

- The PASCAL database contains 177 recordings for heart sound segmentation and 657 recordings for heart sound classification. Recordings last from 1 to 29 s but have a limited frequency range below 200 Hz, due to the applied low-pass filter that removes many of the useful heart sound components for clinical diagnosis.\(^ {44}\)

- The Cardiac Auscultation of Heart Murmurs database, provided by eGeneral Medical Inc., includes 65 recordings. It is not open and thus requires paid access.\(^ {46}\)

During the past few years, some websites containing rich educational material on lung and heart sound databases have been developed and can be used to train health-care professionals. They incorporate user manuals, listening tips, respiratory and cardiac sound recordings, waveforms, exercises for diagnosis training, and quizzes. These include Easy Auscultation Training,\(^ {47}\) Practical Clinical Skills,\(^ {48}\) 3M Littmann,\(^ {49}\) The Auscultation Assistant,\(^ {50}\) and SoundCloud.\(^ {51}\) In addition to the online repositories, several books and accompanying audio CDs for understanding lung sounds and heart sounds and murmurs are available.\(^ {15,52}\)

B. Lung Sound Analysis

Here, we focus on types of lung and heart sounds...
that have been analyzed specifically from 2011 to the present. As mentioned above, wheezes, crackles, stridors, and rhonchi are adventitious breath sounds that are heard over normal breath sounds. These sounds are characteristics of pathologies such as asthma, COPD, and pulmonary emphysema. A summary of the lung sound type analyzed, instrumentation, and data source (sensor type and/or database) is presented in Table 1.

A descriptive summary of normal cardiac sounds (S1 and S2), S3 and S4 as well as other cardiac pathologies such as murmurs, heart valvular disorder, pulmonary stenosis (PS), coronary artery disease, and others are shown in Table 2.

IV. DISCUSSION

This article presents a thorough review of technology associated with the acquisition, recording, storage, and signal processing of lung and heart sounds. We also include a detailed analysis of instrumentation along with data sources, databases, and websites. The existing literature on the analysis of pulmonary sounds focuses on wheezes and crackles. It is worth noting that a relatively small body of literature is concerned with rhonchi, stridor, squawks, pleural rub, and egophony analysis, which illustrates that additional research is needed.54,58,64,67,80,83,84,87,97,102

Although auscultation with a stethoscope has several disadvantages141 and limitations,32 it is the technique that is most frequently used because it is easy to use.142,143 Nowadays, digital techniques including electronic stethoscopes and microphones are generally used to collect data for analysis.

According to the literature on lung sound analysis, the most common respiratory diseases that are studied include COPD53,54,65,75,79,83,86,87,101,105,144 asthma53,54,65,71,72,85,87,105,107,110,117 and pulmonary emphysema.58,70,93,99,106,112 However, lung sounds recorded during pneumonia,54,65,76,79,103 pulmonary fibrosis,56,70,76 chronic bronchitis,56 idiopathic pulmonary fibrosis,63 congestive heart failure,76,79 parenchymal pathology,75,90 and interstitial lung disease76,87,104 appear less frequently in the literature. Regarding heart sound analysis, it is observed that murmurs26,121,126,131,132,135–137 and heart valve problems such as regurgitation25,135 and stenosis130,140 are the most common heart pathologies studied.

The creation of a heart sound database that is accessible to the research community has many potential benefits for different types of users. First, those who lack access to well-recorded clinical signals may use the data to develop and test algorithms. Second, accessibility has the potential to encourage researchers to develop innovative methods for approaching issues in heart sound signal analysis that may not otherwise have been tried.

Computerized lung and heart sound analysis represents a substantive advance in diagnosing, monitoring, treatment, and visualization signaling of respiratory and cardiac pathologies. However, due to a lack of published guidelines, significant differences exist among various laboratories, such as the use of different sensors to acquire signals (type, number, and position)145 and signal-processing techniques.32 For these reasons, it is difficult to make a comparison of the research produced by various laboratories. It is likely that the development of new technology along with suitable standards will allow the diagnosing of pathologies that are not frequently observed.

In that sense, a multinational effort is underway to develop specific guidelines for research and clinical practice in the field of respiratory sound analysis, with the intention of standardizing the procedure for recording respiratory sounds. This project is called Computerized Respiratory Sound Analysis (CORSA) and was developed by more than 20 scientists in seven European countries including Belgium, Britain, Finland, France, Germany, Italy, and The Netherlands.32

A. Toward Mobile Signal Acquisition

Recently, the development of mobile technology has significantly evolved and is often used by clinicians for data acquisition and diagnosis. A study by Reyes et al.146 proposes the use of smartphones to acquire tracheal sounds. These researchers used two smartphones with different operating systems (Android and Apple iPhone operating system). The reference signal was acquired by a spirometer, and results showed a high correlation between the signal acquired with both smartphone devices and the signal acquired by spirometer. The same team also
TABLE 1: Lung sound types

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Data source</th>
<th>Lung sound type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensor type</td>
<td>Database</td>
</tr>
<tr>
<td>53</td>
<td>Electronic stethoscope</td>
<td>Real data and data from Refs. 15, 52, and 55</td>
</tr>
<tr>
<td>54</td>
<td>Electret microphone</td>
<td>Real data and data from Refs. 15, 52, and 55</td>
</tr>
<tr>
<td>56</td>
<td>Electronic stethoscope</td>
<td>Real data and data from Refs. 15, 37, and 55</td>
</tr>
<tr>
<td>57</td>
<td>Electronic stethoscope</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Piezoelectric microphone, electronic stethoscope</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Ref. 37</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>61</td>
<td>Electronic stethoscope</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Ref. 37</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>64</td>
<td>Piezo film, microphone</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Electret microphone</td>
<td>Refs. 44–46</td>
</tr>
<tr>
<td>66</td>
<td>ACCP teaching tape</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Refs. 37 and 68</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Electronic stethoscope</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Pneumotachograph</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>72</td>
<td>Piezoelectric microphone, pneumotachograph</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Electret microphone</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Digital stethoscope</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Ref. 37</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1: (continued)

<table>
<thead>
<tr>
<th>76</th>
<th>Electret microphone, pneumotachograph</th>
<th>Crackle</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Electret microphone, flowmeter</td>
<td>Crackle</td>
</tr>
<tr>
<td>78</td>
<td>Soft stethoscope</td>
<td>Wheeze</td>
</tr>
<tr>
<td>79</td>
<td>Electronic stethoscope</td>
<td>Crackle</td>
</tr>
<tr>
<td>80</td>
<td>Refs. 55, 81, and 82</td>
<td>Wheeze, stridor</td>
</tr>
<tr>
<td>83</td>
<td>Electronic stethoscope</td>
<td>Rhonchi, crackle</td>
</tr>
<tr>
<td>84</td>
<td>Electret microphone, Real data</td>
<td>Wheeze, rhonchi, stridor</td>
</tr>
<tr>
<td>85</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>86</td>
<td>Ref. 37</td>
<td>Crackle</td>
</tr>
<tr>
<td>87</td>
<td>Ref. 88</td>
<td>Wheeze, crackle, squawk</td>
</tr>
<tr>
<td>89</td>
<td>Ref. 37</td>
<td>Wheeze, crackle</td>
</tr>
<tr>
<td>90</td>
<td>Ref. 37</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Ref. 15</td>
<td>Wheeze, crackle</td>
</tr>
<tr>
<td>92</td>
<td>Ref. 37</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Piezoelectric microphone</td>
<td>Unspecified</td>
</tr>
<tr>
<td>94</td>
<td>Electronic stethoscope, Refs. 95 and 96</td>
<td>Wheeze</td>
</tr>
<tr>
<td>97</td>
<td>Ref. 51</td>
<td>Wheeze, crackle, stridor</td>
</tr>
<tr>
<td>98</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>99</td>
<td>Piezoelectronic microphone, electronic stethoscope</td>
<td>Wheeze, crackle, rhonchi</td>
</tr>
<tr>
<td>100</td>
<td>Accelerometer</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Electronic stethoscope</td>
<td>Wheeze, crackle</td>
</tr>
<tr>
<td>102</td>
<td>Refs. 15 and 81</td>
<td>Bronchovesicular, normal and abnormal bronchial, crackle, wheeze, stridor, normal bronchophony, bronchophony by consolidation, normal and abnormal egophony</td>
</tr>
<tr>
<td>103</td>
<td>Digital stethoscope</td>
<td>Crackle</td>
</tr>
</tbody>
</table>
In other studies, smartphones, including their camera and flash, have been used to obtain respiratory rate estimation at normal breathing rates. Because breathing rate and heart rate can be measured directly by a finger’s pulsatile flows, a fingertip was placed in the lens of the smartphone to obtain the pulse signal.

Smartphones for medical research that have been developed during the last several years are known as mobile health (mHealth) apps. mHealth apps include the use of mobile devices for remote monitoring of health conditions. These apps allow for continuous monitoring, real-time data transmission, and remote consultation with healthcare providers.

TABLE 1: (continued)

<table>
<thead>
<tr>
<th>Page</th>
<th>Equipment Description</th>
<th>Sound Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Electret microphone, pneumotachograph</td>
<td>Wheeze, crackle</td>
</tr>
<tr>
<td>105</td>
<td>Electret microphone, pneumotachograph</td>
<td>Wheeze</td>
</tr>
<tr>
<td>106</td>
<td>Piezoelectric microphone, electronic stethoscope</td>
<td>Wheeze, crackle, rhonchi</td>
</tr>
<tr>
<td>107</td>
<td>Electret microphone, pneumotachograph</td>
<td>Refs. 49 and 51 Wheeze</td>
</tr>
<tr>
<td>108</td>
<td>Electronic stethoscope</td>
<td>Crackle</td>
</tr>
<tr>
<td>109</td>
<td>Main microphone of a smartphone</td>
<td>Wheeze</td>
</tr>
<tr>
<td>110</td>
<td>Piezoelectric microphone, pneumotachograph</td>
<td>Wheeze, rhonchi</td>
</tr>
<tr>
<td>111</td>
<td>Electronic stethoscope</td>
<td>Wheeze, crackle</td>
</tr>
<tr>
<td>112</td>
<td>Electronic stethoscope</td>
<td>Unspecified</td>
</tr>
<tr>
<td>113</td>
<td>Ref. 15</td>
<td>Monophonic and polyphonic wheeze, crackle</td>
</tr>
<tr>
<td>114</td>
<td>Refs. 37 and 88</td>
<td>Wheeze, crackle</td>
</tr>
<tr>
<td>115</td>
<td>Electret microphone</td>
<td>Wheeze, crackle</td>
</tr>
<tr>
<td>116</td>
<td>Refs. 37, 50, and 68</td>
<td>Unspecified</td>
</tr>
<tr>
<td>117</td>
<td>Microphone, pneumotachograph</td>
<td>Wheeze</td>
</tr>
</tbody>
</table>

In research proposed by Khan et al., a modified stethoscope and a smartphone were used to record lung sounds. The main aim was the early detection of bronchitis in children who live in rural areas of India. Lung sounds of the patients were recorded at the local pediatrician’s hospital, and the lung sound file and case history were then sent by email to the hospital. A qualified medical practitioner carried out analysis of the sound signal.
TABLE 2: Heart sound types

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Sensor type</th>
<th>Data source</th>
<th>Heart sound type</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>Electronic stethoscope</td>
<td>Moukadem et al. database</td>
<td>80 Sounds: 40 pathological cardiac and 40 valvulopathies</td>
</tr>
<tr>
<td>119</td>
<td>Earphone, microphone, and IC recorder</td>
<td>Sun et al. database</td>
<td>45 Normal sounds and 75 pathological</td>
</tr>
<tr>
<td>120</td>
<td>Electric stethoscope</td>
<td>Jiang et al. database</td>
<td>Two abnormal sounds (unvalidated)</td>
</tr>
<tr>
<td>121</td>
<td>Unavailable</td>
<td>eGeneral Medical PCG database</td>
<td>Heart sounds S₁-S₄ and murmurs</td>
</tr>
<tr>
<td>122</td>
<td>Acoustic cardiography</td>
<td>Wang et al. database</td>
<td>S₃ Sounds: 94 with hypertension, 109 with heart failure, and normal ejection fraction</td>
</tr>
<tr>
<td>123</td>
<td>Self-produced wireless electric stethoscope</td>
<td>Choi and Jiang database</td>
<td>196 Normal and 293 abnormal sounds of heart valvular disorder</td>
</tr>
<tr>
<td>124</td>
<td>Electric transducer</td>
<td>Wang et al. database</td>
<td>50 Normal sounds and 68 abnormal (heart overload, early diastolic, enhanced S₂)</td>
</tr>
<tr>
<td>125</td>
<td>Electric stethoscope</td>
<td>Middle Tennessee State University database</td>
<td>Ten normal and abnormal S₁ and S₂ sounds</td>
</tr>
<tr>
<td>126</td>
<td>Unavailable</td>
<td>Medical training database</td>
<td>Innocent and pathological murmurs</td>
</tr>
<tr>
<td>127</td>
<td>Electronic stethoscope</td>
<td>Online medical archives</td>
<td>Normal heart sounds from lung sounds</td>
</tr>
<tr>
<td>128</td>
<td>Cardiac microphone</td>
<td>Griffel et al. recordings</td>
<td>100 Samples of coronary artery disease</td>
</tr>
<tr>
<td>129</td>
<td>Electronic stethoscope</td>
<td>Saraçoğlu recordings</td>
<td>Healthy subjects and patients with cardiac valve disease, PS, or MS</td>
</tr>
<tr>
<td>130</td>
<td>Electronic stethoscope</td>
<td>Gharehbaghi et al. recordings</td>
<td>100 Patients with VAS</td>
</tr>
<tr>
<td>131</td>
<td>Unavailable</td>
<td>Two data sets from heart sounds laboratory of the Texas Heart Institute</td>
<td>50 Heart sounds and murmurs</td>
</tr>
<tr>
<td>25</td>
<td>PCG</td>
<td>Database from Michigan University website</td>
<td>Arrhythmic nature of heart beat. Mitral regurgitation, aortic regurgitation, and patent ductus arteriosus</td>
</tr>
<tr>
<td>132</td>
<td>iPhone users and the iStethoscope</td>
<td>Two public data sets published in the PASCAL Classifying Heart Sounds Challenge</td>
<td>176 Records organized in four categories: normal, murmur, extra heart sound, and artifact</td>
</tr>
</tbody>
</table>
TABLE 2: (continued)

133	PCG	Zheng et al.133 data set	80 Normal heart sounds and 167 systolic heart murmur samples segmented from 40 healthy volunteers and 67 patients
134	Stethoscope	Uğuz134 recordings	120 Subjects with normal, pulmonary, and MS heart valve diseases
135	Electronic stethoscope	Data set of Massachusetts General Hospital	123 Patients: 38 normal controls, 37 MVP, 36 benign murmurs, five aortic disease, and seven miscellaneous conditions (tricuspid regurgitation, endocarditis, asymmetric septal hypertrophy)
136	Electronic stethoscope	Data collection of Real Hospital Portugues de Beneficencia, Brazil	84 Heart sounds, only identifications of murmurs
26	Electronic stethoscope	Randhawa and Singh19 data recordings	144 Samples of normal, systolic murmur, and diastolic murmur signals
137	Electronic stethoscope	Tang et al.157 data recordings	Three normal and 23 abnormal patients; murmurs found
138	Electronic stethoscope	Data set of the Children Heart Center of Tehran, Iran	40 Normal and 80 valvular and septal heart disease
139	Electronic stethoscope	Database from Rajaei Cardiovascular, Medical, and Research Center	25 Males and 25 females with different types of valve disease
140	Phonocardiographic sensor	Zhang et al.140 data recording	225 Normal sounds and 180 abnormal sounds such as MS, ventricular septal defect, and aortic stenosis

MS, Mitral stenosis; MVP, mitral valve prolapse; PCG, phonocardiogram; PS, pulmonary stenosis; VAS, valvular aortic stenosis

Monitoring of vital signals, disease prevention, acquisition and to send medical information and research, data visualization, and tracking of treatment progress. Nowadays, a vast array of mHealth apps are available on the market for constant monitoring of vital signs such as blood pressure, cardiac frequency, and oxygen saturation. Some publications document the use of smartphones for the diagnosis of diseases152 and as a medical assistant,153 among others uses.

mHealth apps have several benefits, especially for medical education.154 In a study conducted by Low et al.155 a team of trained doctors used an app156 to significantly improve performance during a simulated cardiac arrest. Another study carried out by Buijink et al.157 suggests that medical apps in clinical practice will significantly contribute to accessible and evidence-based health care and to improve practical clinical skills in medical education. Much work is needed by physicians, hospitals, and healthcare centers to establish appropriate regulatory procedures that ensures patient safety when a mHealth app is used.

With the current shortage of access to health
care, especially in countries with large populations, major health issues have emerged. For example, according to the WHO, 70% of population in India lives in rural areas, but physicians and health-care resources are concentrated in urban areas. Such a situation creates the need to develop compact and easily accessible devices that can help to diagnose major pathologies, which is in line with the main objective of this review.

V. FUTURE PROSPECTS AND CONCLUSIONS

In this article, we analyzed a global system in which smartphones are used for monitoring, diagnosis, and giving medical support and assistance (should that become necessary) that is based on a large database. The value for this “big data” in health care today is limited to research, because its use requires a very specialized skill set; however, big data analytics has great potential in the health-care field. Academic and research-focused health-care institutions are either experimenting with big data and already using it for advanced research projects. Some system details are given below.

Acoustic signals generated by the human body (e.g., lungs, heart, stomach) are acquired through sensors, and these sampled signals are sent to a server via smartphone. Feature extraction and machine-learning algorithms are applied to the signals online. Once these signals are analyzed, results of the analysis are sent to a medical record server that will be reviewed by specialist doctors and then sent to the global database. This database will include data recordings from others parts of the world to help refine the diagnosis through algorithms based on pattern recognition and artificial intelligence.

Subsequently, results of analyses are sent to the mobile device to provide a diagnosis of a patient’s pathology. Owing to the availability of global positioning system (GPS) technology on mobile devices, the patient can potentially receive immediate medical assistance, for example in case of a medical emergency. This will benefit those living in rural areas. Figure 8 presents an overview of the proposed system. Other considerations include patient privacy and deployment of sensors, camera, GPS technology, internet access, and a team of specialist physicians who can validate the information and results that are received from the big database.

Often, methods that health-care professionals use to analyze, process, and interpret data remain
basic. Cutting-edge technology including machine-learning algorithms, natural language processing, and cognitive computing are needed to better understand human behavior. A large database system with GPS is proposed herein (Fig. 8).

ACKNOWLEDGMENTS

The Consejo Nacional de Ciencia y Tecnología (CONACyT- Mexico) and the advanced manufacturing research group of the Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM) funded this work.

REFERENCES

9. Centers for Disease Control and Prevention NC for HS. Underlying Cause of Death 1999–2013 on the CDC WONDER Online Database; released 2015. Data from the Multiple Cause of Death Files, 1999–2013, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. 1999.
23. Goldblatt A, Aygen M, Braunwald E. Hemodynamic-

31. Tavel ME. Cardiac auscultation: A glorious past—and it does have a future! Circulation. 2006;113(9):1255–9.

76. Ponte DF, Moraes R, Hizume DC, Alencar AM. Characterization of crackles from patients with fibrosis, heart

